ABELIAN CONSTRAINTS IN INVERSE GALOIS
THEORY

ANNA CADORET AND PIERRE DEBES

ABSTRACT. We show that if a finite group G is the Galois group of
a Galois cover of P! over Q, then the orders p™ of the abelianization
of its p-Sylow subgroups are bounded in terms of their index m, of
the branch point number r and the smallest prime ¢ f |G| of good
reduction of the branch divisor. This is a new constraint for the
regular inverse Galois problem: if p™ is suitably large compared to
r and m, the branch points must coalesce modulo small primes.
We further conjecture that p™ should be bounded only in terms
of r and m. We use a connection with some rationality question
on the torsion of abelian varieties. For example, our conjecture
follows from the so-called torsion conjectures. Our approach also
provides a new viewpoint on Fried’s Modular Tower program and
a weak form of its main conjecture.

1. INTRODUCTION

The central idea behind this work is this. Suppose we are given a
finite Galois cover Y — P! over some field k& with Galois group G.
Assume first for simplicity that the ramification indices are relatively
prime to some prime divisor p of the order of G. Then if P is a p-Sylow
subgroup of G, the containment [P, P] C P corresponds, via Galois
theory, to a non-trivial unramified abelian curve cover Z — X (with
group the abelianization P?P). This imposes some non-trivial condition
on the Jacobian Jac(X).

We deduce some bounds on the order of P?P. Theorem 2.1 uses
known estimates for the number of rational torsion points on a Jacobian
variety over finite fields and over f-adic fields. If £k = Q for example,
we obtain a bound involving the number r of branch points, the index
m of the p-Sylow subgroups of G and the smallest prime ¢ /|G| of
good reduction of the branch divisor of ¥ — P!. We also have a
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conjectural bound, which only depends on r and m: conjecture 2.2
relies on standard conjectures on the torsion of abelian varieties.

These bounds for the order p” of P?P can be regarded as new con-
straints in inverse Galois theory: from theorem 2.1, the branch points of
a Galois cover Y — ]P’(%2 of group G must coalesce modulo small primes
not dividing |G| if p™ is suitably large compared to r and m; from
our conjecture, p" should be bounded in terms of r and m. Dihedral
groups Dy are typical examples: if r is bounded, possible realizations
Y — IP’}@ have bad reduction modulo any given prime ¢ # 2, p provided
n is suitably large and conjecturally only finitely many of them can be
realized. More generally we show this holds with the dihedral groups
D, replaced by characteristic quotients G, of the universal p-Frattini
cover of any finite group.

These results have some modular interpretation in terms of existence
of rational points on certain towers of moduli spaces — Fried’s Modular
Towers — which the tower of modular curves (Y1(p")),>1 is the start-
ing example of. We show the main conjecture of the Modular Tower
program is a special case of our conjecture, and so also a consequence
of the standard torsion conjectures. And as a consequence of theorem
2.1, we prove a weak form of the Modular Tower conjecture.

The paper is organized as follows. Theorem 2.1 and conjecture 2.2,
our central statements, are given in §2.1. Theorem 2.1 is proved in §2.3.
Some first consequences to inverse Galois theory, including a proof of
conjecture 2.2 for 3 branch points covers, are given in §2.2 and §2.4.
In §2.5 we discuss the connection with the torsion of abelian varieties.
Section 3 is devoted to the Modular Tower program. After recalling the
construction of modular towers in §3.1, the Modular Tower conjecture
is stated in §3.1.4 and, in §3.2, weak forms of it are deduced from
theorem 2.1 (corollaries 3.5 and 3.7).

2. CENTRAL RESULTS

Given a field k, we denote its algebraic closure by k, its separable
closure by k® and its absolute Galois group by Gal(k®/k).

A k-curve X is a smooth projective and geometrically connected
k-scheme of dimension 1; we denote by gy its genus.

Given a finite group G, a k-G-curve with group G is a k-curve X to-
gether with a fixed embedding of G into its automorphism group'. An

'We always omit this embedding in our notation though it is part of the data.
Similarly, for G-covers below, we always omit the isomorphism beween G and the
automorphism group of the cover.
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isomorphism of k-G-curves X and Y with the same group G is an iso-
morphism y : X=Y of k-curves compatible with the given embeddings
of G in the automorphism group of X and Y respectively.

Suppose given, in addition, a k-curve B. A k-G-cover of B with
group G is a Galois cover f : X — B of k-curves given with an iso-
morphism between its automorphism group and G. An isomorphism
between two k-G-covers f: X — B and ¢g: Y — B is an isomorphism
X : X=Y of k-curves such that goy = f and which is compatible with
the actions of G.

Suppose a discrete valuation v is given on k with valuation ring R.
Then a divisor D C B is said to have good reduction at v if there is
a model Br of B over R with good reduction such that the Zariski
closure D of D in Bpg is finite etale over R.

2.1. Central statements. We consider a more general situation than
in the introduction: the base space is any k-curve (and not just the
projective line P'), P is any subgroup of G' (and not just a p-Sylow
subgroup) and the ramification is not necessarily prime to |P|. We
denote the abelianization of P by P2P.

By local field we mean a complete valued field for a discrete valuation
v with finite residue field. We fix a subfield k£ of some local field, given
with the valuation v; we say a sub-local field. We let ¢ > 0 be the
characteristic of the residue field, ¢ = ¢/ be its cardinality and e = v()
be its absolute ramification index. When £ has characteristic 0, k is a
subfield of some finite extension of Q;; we say a sub-f-adic field.

Theorem 2.1. Let B be a k-curve, G be a finite group, f:Y — B be
a k-G-cover of curves with group G and ramification indices eq,. .., e,
and P be any subgroup of G of index m. Assume that:

(GR) The branch divisor of f 1Y — B has good reduction and
¢ f(G],ml).

Then we have the following:

(a) If k is of characteristic 0 or if £ J|P?P|, there exists a constant
C' depending only on m, r, q, e and gg (but not on the ramification
indices ey, ..., e.) such that Pab g of order < C.

(b) If k is of arbitrary characteristic and ¢ J|P*|, then

[PPI< ey e)™ (1+ V@)™
where e} = ged(e;, |PP|)and g = 1+ 2(r +2g5 —2 — 1, 1/€;).

Theorem 2.1 is proved in §2.3.
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Assume G has a regular realization over some number field K, i.e.
there exists a K-G-cover f : Y — P! with group G. For any valuation
v of K, e and f can be bounded by d = [K : Q. If P is a subgroup
of G, then from theorem 2.1, |P?P| can be bounded in terms of K,
|G : PJ], r and the smallest prime ¢ /| |G| of good reduction of the
branch divisor’>. We conjecture the last dependence is unnecessary.

Conjecture 2.2. Let m > 1 and r > 0 be two integers. Let G be the
Galois group of some K-G-cover f : Y — P! with at most r branch
points. If P is any subgroup of G of index m, then the order of its
abelianization P* can be bounded by a constant depending only on r,
m and K.

There are several variants of the conjecture: its conclusion may be
required to hold only for p-subgroups P C G (with a constant also
depending on p); or the exponent of P2b_instead of its order, may be
claimed to be bounded; the dependence of the constant in K may only
involve the degree [K : Q], etc. We will specify when necessary which
variant may or should be used.

The case r < 2 is trivial both in theorem 2.1 and in conjecture 2.2.
From now on we will always assume r > 3. We show below that the
case r = 3 of conjecture 2.2 follows from theorem 2.1.

Corollary 2.3. Conjecture 2.2 holds for 3 branch point covers.

Proof. Let f : Y — P! be a G-cover as in the statement of conjecture
2.2 with at most 3 branch points. These branch points are defined over
an extension Ky/K of degree < 6. Up to composing f with a linear
fractional transformation defined over Ky, one may assume they are 0,
1 or co. Let P C G be a subgroup of index m. Pick a prime ¢ > m and
a place v of Ky above ¢. Condition (GR) is satisfied. Use theorem 2.1
(a) to bound |P?P| by a constant depending only on m, r and K. [

2.2. A new constraint in inverse Galois theory. The case P is a
non trivial p-Sylow subgroup of G is of special interest as the order p™
of P2 is > p (and even > p? if |P| > p?). Assume a regular realization
f:Y — PL of G defined over the number field K is given with at most
r branch points. Conjecture 2.2 predicts that p™ should be bounded in
terms of r, m = [G : P] and K. Theorem 2.1 implies the following:

2Here the integral model of P! is implicitly taken to be PL. Good reduction
of the branch divisor at the prime ¢ means that, for any place v above £, no two
geometric branch points a,a’ € K U {co} coalesce at v (that is, a,a’ do not satisfy
(Jlals €1, |d'|[s < 1land |[a—d|; < 1) or (Jalz = 1, ||z = 1 and |[a=! —a'71]; < 1),
where ¥ is any extension to K of v).
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(*) there exists a constant C(€, m,r,d) such that the branch divisor of f
has bad reduction at every prime € fm such that C(¢,m,r,d) < p". If
in addition the ramification indices ey, . . . , e, are prime-to-p and ¢ [ |G|

then one can take C(0;m,r,d) = (02 +1)% with g = 1 + @

For instance, if |G| = 3p" (N > 2), then every 4-branch-point regu-
lar realization of G over Q with prime-to-p ramification necessarily has
a branch point divisor with bad reduction at 2 if p > 37. The same
holds without the prime-to-p ramification restriction if 37 is replaced
by some suitably large constant.

It was already known that the branch points of potential regular
realizations of some finite group G over some number field K should
satisfy certain conditions: their number should be bigger than the rank
of G (a topological condition); actions of Gal(K/K) on them and on
the ramification type should be compatible (an arithmetical condition
known as the “branch cycle argument” [V6196, p.34]). Theorem 2.1
points out a new constraint on the reduction of the branch divisor.

2.3. Proof of theorem 2.1. We may and will assume that the field
k itself is a local field.

The k-G-cover f:Y — B factors as shown on the diagram

Y

_—>

/ pab/
/p

I -~

X
\ l pabyg
B

Z

i
A
\

where for example Y ", X means the k-G-Galois cover obtained
by modding out the curve Y by the subgroup P C Autg(Y'). We have
also introduced the subgroup I C P2 generated by all the inertia
subgroups of Z — X.

The k-G-cover Z” — X is an abelian etale cover with group PP /1.
Assume P?P £ [ so in particular X is of genus gx > 1. Denoting the
jacobian variety of X by Jac(X), the cover Z” — X induces a k-isogeny
a: A — Jac(X) with the property that its geometric kernel ker(a) (k%)
is isomorphic to the trivial Gal(k®/k)-module P2 /I [Cad08b, lemma
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2.4 & remark 2.5)% in particular, ker(a)(k®) is contained both in the
| PaP /T |-torsion part of A and in A(k).

Furthermore, from [Ful69, theorem 3.3], assumption (GR) guaran-
tees that the cover X — B has good reduction (note that the order
of the Galois group of the Galois closure of f : X — B divides both
|G| and m!). Consequently so do the curve X and its Jacobian Jac(X)
[Mil86, corollary 12.3].

2.3.1. Proof of (b). As we assume £ [|P?|, the isogeny a reduces
modulo v to an isogeny @ : A — Jac(X) [BLR90, proposition 7.3.6];
in particular, |A(F,)| = |Jac(X)(F,)| [Tat66]. Furthermore reduction

modulo v is injective on the |P2P/I|-torsion part of A [BLR90, lemma
7.3.2] and so also on ker(a)(k®) C A(k). Whence

ker(a) (k)| = | P2 /1| divides |A(F,)| = |Jac(X})(F,)|
The term (1 + ,/g)* in the desired inequality corresponds to the stan-
dard upper bound in Weil’s inequality for the number of [ -rational
points on an abelian variety of dimension g over F,. The value of g
given in the statement comes from the Riemann-Hurwitz formula.

It remains to bound |I]. For each point P € X (k*P) above some
branch point ¢; of f (i =1,...,r), pick a generator wp of some inertia
group of Z — X above P, and denote its order by vp. Then [ is
generated by all these wp and so |I| < [[,vp. Now clearly vp divides
both e; and | P?P|, whence the inequality || < (¢} - - - €.)™ which yields
the announced result (both in the cases PP # I and P?» = I).

2.3.2. Proof of (a). When k has characteristic 0, we use the uniform
bound (2) for |A(k)tors| given in the main theorem of [CX08] when A
has good reduction (note that A has good reduction since it is isogenous
to Jac(X) [BLR90, chap.VII, prop.6.6]):

|PP/ 11 < AR ors] < (Ce/(€=1))% (1+ \/@)*
If k is of positive characteristic, then by assumption ¢ J|P2"| and the
bound for |P2P/I| obtained in §2.3.1 is available.

In order to bound |I|, we use here the following method that leads
to some bound independent of the indices e, ..., e, (and also works in
the case P* = I).

The group I is a quotient of the fundamental group of the curve Z2°
with all points above the branch points of f removed. Consequently

3This is classical when k is algebraically closed [Ser59, Chap.6, §2.12] [Mil86,
Prop.9.1]. The paper [Cad08b] extends this result to arbitrary fields.
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it can be generated by less than v = 2g, + rm(|P?|/|I|) elements
(recall, when k has positive characteristic, that ¢ / |P?P|) and so we
have |I| < exp(I)” where exp([) is the exponent of I and g is the
genus of Z°. Use the Riemann-Hurwitz formula to bound ¢, in terms
of m, r, gg and |P*|/|I|.

For each prime p, use [Cad08b, Lemma 2.1] to bound the p-part, say
p™, of exp(I): the residue field of Z” at each associated branch point
in the cover Z — Z° contains the p"-th roots of unity. It follows that
for p # £, we have p™ |¢” — 1 where D is the degree of that residue
field over k. For p = /¢, then k is an f(-adic field and only a bounded
number of ¢"-roots of 1 can be in some extension of k of degree < D.
Specifically we have ¢ — ("~ < efD, whence (™ < 2eqD.

Bound D by m|P?"|/|I| to conclude that |I| can be bounded in terms
of m, r, q, e, gg and |P*|/|I|. Finally use the bound for |P2P|/|I|

previously obtained (or bound it by 1 in the case pab — 1 ). O

Remark 2.4. The argument given above to bound |/| is independent
of the assumption (GR). If k is a number field, it can be used for any
finite place of k.

2.4. On the good reduction hypothesis (GR). As the proof shows,
hypothesis (GR) can be more generally replaced in theorem 2.1 by

(GR-) The quotient curve X of Y modulo P has good reduction.

(which is also implied by the condition that Y itself has good reduction
[Ray90]). In the special case G = P is abelian and ) = --- = ¢, = 1,
theorem 2.1 with assumption (GR-) yields the following.

Corollary 2.5. Let k be a sub-local field and B be a k-curve with good
reduction. If k is of characteristic 0, then only finitely many abelian
groups occur as the Galois group of some unramified k-G-cover of B;
and the number of those groups is bounded in terms of q, e and the
genus g of B. The same holds for abelian groups with prime-to-€ order
if k is of arbitrary characteristic.

When X has bad reduction, our method fails because the torsion
part of Jac(X)(k) cannot be estimated efficiently. More specifically
the following may occur (and does occur, see remark 3.6). Let j°
denote the neutral component of the special fiber j of the Néron model
of Jac(X). Then j°(F,) can be bounded uniformly in terms of gx, ¢
and e since it is an extension of an abelian variety by the product of a
torus and a unipotent group. If the torus does not contains G,,, then
7/7°(F,) can also be bounded uniformly in terms of gx, ¢ and e but
when the torus contains G,,, then j/j(F,) can be arbitrarily large. So,
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as the reduction of a torsion point of Jac(X)(k) of order p™ can fall in
4/3%, there is no hope to get a uniform constraint on p".

2.5. Torsion of abelian varieties. The following statement can be
drawn from the proof of theorem 2.1.

(*) Given a G-cover Y — B over a sub-C-adic field k with group G
and r branch points, if P C G is a subgroup of index m, there exist a
k-curve X of genus gx <1+ M and a subgroup I C P?® of order
bounded in terms of m, r, q, e, gg and |P* /1| such that:

- either gx = 0 and then P = I has order bounded only in terms of
m, r, q, e and gg,

-or gx = 1 and a k-isogeny o : A — Jac(Xy) can be constructed
such that its geometric kernel ker(a)(k) is isomorphic to the trivial

Gal(k/k)-module P* /1.

When £ is a number field, standard conjectures on torsion of abelian
varieties, which we recall below, impose sharp bounds on | PP /I|.

Torsion Conjecture. Let A be an abelian variety of dimension g > 1
and defined over some number field K. Then the order of the torsion
subgroup of A(K) can be bounded in terms of g and K.

There is also a p-Torsion Conjecture in which a prime p is fixed and
it is the p-part of the torsion subgroup of A(K') that is bounded, by a
constant also depending on p. Strong variants have the dependence in
K of the constant only involve the degree [K : Q].

It directly follows from (*), conjoined with remark 2.4, that the
Torsion Conjecture implies conjecture 2.2. The p-Torsion Conjecture
implies the weaker form of conjecture 2.2 in which P C G is a p-
subgroup. Furthermore the possible dependence of the constants in K
through [K : Q] is preserved via these implications.

Ezxample 2.6 (dihedral group example). Consider the group G = Dpn
(dihedral group of order 2p™) with p an odd prime and n > 1. Theorem
2.1 yields that any regular realization of D,» over a sub-local field & with
a bounded number of branch points necessarily has a branch divisor
with bad reduction if p™ is suitably large. As for conjecture 2.2, it
implies the following conjecture, still open for r > 5.

Dihedral Group Conjecture [DF94] [Deb06]. Given a number field
K and an integer r = 0, only finitely many groups Dyn with p an odd

4Note that this reduction still has order p™ since the p-primary torsion of the
Néron model of Jac(X) is etale over the valuation ring R.



ABELIAN CONSTRAINTS IN INVERSE GALOIS THEORY 9

prime andn > 1 can be reqularly realized over K with at most r branch
poInts.

For r < 5 it was proved in [DF94, §5.1]. The main case is r = 4. The
genus gy of the curve Xy from (*) above is then gx = 1 and so the
result follows from the Mazur-Merel theorem (that is, the case g = 1
of the Torsion Conjecture).

The dihedral group example was the starting point of the Modular
Tower program which we will now consider.

3. APPLICATION TO THE MODULAR TOWER PROGRAM

In this section, we will use theorem 2.1 in the following special situ-
ation: the base space of the covers is B = P! and (GR) is replaced by
the stronger hypothesis

(GR+) The branch divisor of f has good reduction and { f|G].

Recall (GR+) also guarantees that, over local fields, the field of moduli
of a G-cover f:Y — P! of group G is a field of definition [DH9S].
Specifically, we will use the following special case of theorem 2.1.

Corollary 3.1. Let G be a finite group, k be a sub-local field and
f:Y — P! be a k5-G-cover of group G and field of moduli k. Assume
condition (GR+) above holds. If P is any subgroup of G of order
prime to each of the ramification indices ey, ..., e, of f and with index
m = |G : P], then we have |P?™| < (1+ ,/q)% where g =1+ M

3.1. Modular towers. Assume the ground field has characteristic 0.

3.1.1. Hurwitz spaces. An important discrete invariant to classify G-
covers is the ramification type: it is the unordered r-tuple® {C1, ..., C,}
of the conjugacy classes in the Galois group of the so-called distin-
guished generators of the inertia groups [Deb01, §2].

Given a finite group G, an integer r > 3 and C = {C4,...,C,} an
unordered r-tuple of conjugacy classes of G, we denote the stack of
G-covers of P! with group G and ramification type C by H,(G,C).
Similarly, we denote the stack of G-curves with group G such that
the resulting G-cover has ramification type C by H-(G,C). We also
denote the stack of r-marked projective lines by U, and the stack of
genus 0 curves with a degree r etale divisor by Mg ,). These stacks
admit coarse moduli schemes, that we denote by H,(G,C), H-(G,C),
U, and Mg ] respectively. The natural commutative diagram of stacks:

Sthat is, an r-tuple regarded modulo the action of the symmetric group S,.
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HT(G7Q) - Hf(G,Q)

| |

U, Mo,r)

induces a similar commutative diagram at the level of coarse moduli
schemes, in which the horizontal arrows can be identified with the
geometric quotient modulo PGL, [CT08a].

Recall that, in our situation, for every field k of characteristic 0, k-
rational points on stacks correspond to objects defined over k whereas
k-rational points on coarse moduli schemes corresponds to k-isomor-
phisms classes of objects defined over k and with field of moduli .

These stacks and coarse moduli schemes are generically called Hur-
witz stacks and Hurwitz spaces. See [Wew98] or [BR06] for more on
Hurwitz spaces.

3.1.2. Characteristic quotients. Fix a finite group Gy and a prime divi-
sor p of |Go| and consider the universal p-Frattini cover G of G [FJ04,
§22.11]. The profinite group G is an extension

1-P—G— Gy —1
of the finite group Gg by a free pro-p group P of finite rank p > 16.

Consider next the Frattini series (P,)nso of P defined by: Py = P

and ﬁn = ﬁé’_l[ﬁn_l, P,_1] (n > 1). The groups P, are characteristic
free pro-p subgroups of P and form a fundamental system of open
neighborhoods of 1 [RZ00, Ex. 2.8.14], the quotients G, = G/P, are
finite and G is the inverse limit of the groups G,.

3.1.3. Modular towers. Retain the notation of §3.1.2. Assume in addi-
tion that the finite group Gy is p-perfect, that is, Gy is generated by its
elements of prime-to-p order, or, equivalently, it admits no quotient iso-
morphic to Z/pZ 7. Let then r > 3 be an integer and C' = {C1,...,C,}
be an unordered r-tuple of conjugacy classes of Gy of prime-to-p or-
der®. From the Schur-Zassenhaus lemma, each class C; can be lifted
in a unique way along the natural surjection G,, — G to a conjugacy

class C7' of G,, with the same order as C; to provide an unordered
r-tuple C" = {C},...,C'} (n > 0).

6This more general context is in fact sufficient for our main results: corollaries
3.3, 3.5 and 3.7 and their proof, hold under this more general condition on G.

"Corollary 3.1 and conjecture 2.2 with P a p-subgroup are trivial if Gy is not
p-perfect: there are no cover of group Gy with prime-to-p ramification in this case.

8By order, we mean the common order of the elements in the conjugacy class.
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Consider the associated Hurwitz spaces H,.(G,,, C"), which we denote
for short by H" (n > 0). By functoriality, the canonical surjection
G, — G, induces algebraic maps H" — H"~ (n > 1). The collection
(H")n>o0 given with these maps is the modular tower associated with
Gy, p, 7 and C; we denote it by H,.(Go, p, C).

Similarly set H"= = H-(G,,C") (n > 0). The collection (H"=),>o
with the natural maps H"™= — H™= is the PGLsy-reduced modular
tower. We denote it by H,(Go, p,C)=.

For more on the construction of modular towers, which is due to
Fried, see [Fri95, part III] or [Deb06].

3.1.4. The following statement is the main conjecture of the Modular
Tower program.

Modular Tower Conjecture (Fried) Let K be a number field. If
n is suitably large (depending on Gy, r and K), there are no K-
rational points on the n-th level H"= of the PGLg-reduced modular
tower H,.(Go,r,C)=.

There are several versions of the conjecture depending on whether
it is stated for reduced moduli spaces (like here) or for the original
moduli spaces H" or for the corresponding stacks. The reduced version
stated above is a priori the strongest version. But all these variants
can actually be shown to be equivalent if the dependence in K of the
constants involved is through [K : Q] [Kim05], [Cad08a, corollary 3.12].

Example 3.2. For Gy = D, the dihedral group (p an odd prime), the
PGLj-reduced modular tower is isomorphic to the tower of modular
curves Y1 (p"™) (n > 0). Since the Y;(p") are geometrically irreducible
and of genus > 2 (n > 0), the Mordell conjecture [Fal83] shows the
Modular Tower Conjecture holds in this special case.

3.2. Weak form of the Modular Tower Conjecture. Let Gg, p, r
and C be as above.

3.2.1. First version. As a consequence of corollary 3.1, we obtain the
following result, which is a first version of our weak form of the Modular
Tower conjecture and which in some form appeared first in [Cad04].

Corollary 3.3. Let r > 0 be an integer, k be a sub-local field with
residue field F, such that (q,p|Go|) =1 and n be an integer such that
G -2
P> (14 /)% with g:1+—| °|(g )
Then every k5-G-cover f, : Y — P! of group G,, with field of moduli k,
with at most r branch points and with prime-to-p ramification indices
necessarily has a branch divisor with bad reduction.
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Proof. The result follows from corollary 3.1 applied to the p-subgroup
P = P/P, of G = G/P,. Note that [G : P] = |G| and that P?» ~
(Z/p"Z)P. For the last isomorphism, just write

p __  p/ppP _ P™
P,[P,P]  P,[P,P]/[P,P] (P%®),
where in the third isomorphism (Pab)n is the n-th term of the Frattini

series of P? and (P, ~ P,[P, P]/[P, P] is easily established by in-

duction; the last isomorphism comes from PP ~ Zb (use the universal
property of free pro-p groups). O

P~ ~ (Z/p"7)°

Using conjecture 2.2 instead of corollary 3.1 in the proof above leads
to the following. The conjectures involved are considered in their vari-
ant for which the dependence in K of the constants is through [K : Q).

Corollary 3.4. The Modular Tower Conjecture holds under conjecture
2.2, and more precisely under the variant in which P C G 1is a p-
subgroup. Consequently it holds under the p-Torsion Conjecture.

3.2.2. Reduced version. Given a discrete valuation v on a field k (of
characteristic 0) with valuation ring R, we say that a divisor D C
P~ has good reduction modulo PGLg if some representative x (D) with
x(D) D {0,1,00} (for some linear fractional transformation y) has
good reduction at v in the sense that x(D) is defined over k and its
Zariski closure x(D)g in P, is finite etale over R.

Corollary 3.5. Let Gy, p, v and C be as above. Let k be a sub-local
field of characteristic 0 and of residue field F, with (q,p|Go|) = 1
Then there exists a constant d(r) depending only on r such that for
every integer n satisfying

|Gol(r —2)

2
all the k-rational points on the n-th level H"= of the PGLy-reduced
modular tower H,.(Go, p, C)= correspond to classes modulo PGLy of G-
covers of Pt with a branch divisor having bad reduction modulo PGL,.

Proof. Let h= € H™=(k) with n as in the statement. From [Cad08a,
corollary 3.12], there exists a constant d(r) such that = can be lifted to
some point h on the original Hurwitz space H" that is rational, together
with each of the associated branch points 1, ..., t,, over some extension
ko/k of degree < d(r). If x is some linear fractional transformation such
that {0,1,00} C {x(t1),...,x(t,)}, then x is defined over ky. Thus if
f is the k-G-cover corresponding to h, then the G-cover y o f has field

p" > (14 ¢ )2 with g =1+
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of moduli kg. It follows from corollary 3.3 that x (D) has bad reduction
at v. U

Remark 3.6 (the good reduction condition). Corollary 3.5 asserts there
is necessarily bad reduction of the branch divisor corresponding to ra-
tional points over a local field k on suitably high levels of a modular
tower. A natural question is whether there exist k-rational points at all
on every level of a modular tower. Using Harbater’s patching method
over complete fields (which provides covers with bad reduction), it was
shown that if C is of the form C = {Cy,C; ", ..., Cs, 7'} and k con-
tains Nth roots of 1 with N the l.c.m. of the orders of C4,...,C;
then there exist projective systems of k-rational points on the stack
tower H,.(Go, p, C) [DDO04, §4]. This shows in particular that the good
reduction hypothesis (GR) cannot be removed in theorem 2.1.

The next result collects some further implications to the Modular
Tower Conjecture.

Corollary 3.7. Let Gy, p, r and C be as above and K be a number
field.  Assume the PGLg-reduced modular tower H,.(Go,r,C)= has at
least one K -rational point on every level H"=. Then this holds:

(a) The set of primes £ [ p|Go| of Q of bad reduction of the branch
divisor class modulo PGLy of covers in H"=(K) tends to the whole
set of primes { [ p|Go| when n — oo, uniformly in h € H"=(K). In
particular, there is no projective system of K-rational points on the
PGLy-reduced modular tower.

(b) For every finite set S of primes £ [p|Gy|, every level H™= has
K -rational points corresponding to covers with singular branch divisor
class modulo every prime ¢ € S (m > 0). In particular there are
infinitely many K -rational points on every level.

(c) If in addition r = 4, then each level H™= has an irreducible
component that is a curve of genus 0 or 1 (n > 0). Furthermore, given
a finite set S of primes € Jp|Gy|, for every integer n such that

P > (14 max(S)9 /)29 with g =1+ |Go|(r — 2)/2
the image of the map V= : H"=(K) — PY(K)\ {0,1,00} ? is contained
in the subset {|\|, # 1} U {|\ — 1], < 1} for every place v of K above
some prime £ € S.

Remark 3.8. The non-existence of projective systems of K-rational
points on a modular tower first appeared in [BF02]; the result was then

refined and extended to more general situations in [Kim05], [Cad04] and
[Cad08b]. The case r = 4 has been thoroughly studied by Fried [BF02],

9We have identified U;/PGLg with P!\ {0,1,00}.
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[Fri06]. A proof of the Modular Tower Conjecture in this case has re-
cently been given by the first author and Tamagawa [CT08c|]. They
deduce it from a proof of the p-Torsion conjecture for special fibers of
abelian schemes over K-curves. In [CT08b], they extend their result to
prove the strong variant of the p-Torsion conjecture (where the bound
depends only on [K : Q]) for special fibers of abelian schemes over K-
curves. This implies in particular that the corresponding strong variant
of the 1-dimensional Modular Tower conjecture also holds.

Proof. (a) Let S be a finite set of primes ¢ fp|Gy|. Apply corollary 3.5
with £k = KQ and ¢ € S. For every integer n satisfying the inequality
of the statement with ¢ = max(S), we obtain that S is contained in
the set of primes ¢ Jp|Gy| of bad reduction of the branch divisor class
modulo PGLy of any point in H"=(K); such a K-rational point exists
by assumption. The second part of (a) is immediate as the branch
divisor class is constant in a projective system of points.

(b) Fix an integer m > 0 and a finite set S of primes ¢ [p|Gp|. Use
(a) to consider an integer n > m such that all points in H"=(K) have
the property that the associated branch divisor classes modulo PGLs
are singular modulo each prime in S. Such K-rational points induce
K-rational points on H"= with the same branch divisor, and so with
the same property. This property guarantees existence of K-rational
points on H™= with a branch divisor class singular at some given prime
not already in the finite list of primes of bad reduction of a given finite
set of points on H™=. In particular H™=(K) is infinite.

(¢) Assume furthermore r = 4. The reduced Hurwitz spaces H™=
are then of dimension » — 3 = 1: they are curves. The first assertion
then follows from Faltings’ theorem [Fal83]. The rest of statement (c)
follows straightforwardly from corollary 3.5 and the definition of bad
reduction for some set {0, 1,00, \}. O
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